Roland SPD-20 Drums User Manual


 
13 EPAD2 Crosstalk Cancel 06
14 EPAD2 Rim Sens 015
15 EPAD3 Trig Type 013
16 EPAD3 Trig Sens 015
17 EPAD3 Trig Threshold 015
18 EPAD3 Trig Curve 04
19 EPAD3 Scan Time 030
1A EPAD3 Retrigger Cancel 015
1B EPAD3 Mask Time 016
1C EPAD3 Crosstalk Cancel 06
1D EPAD4 Trig Type 013
1E EPAD4 Trig Sens 015
1F EPAD4 Trig Threshold 015
20 EPAD4 Trig Curve 04
21 EPAD4 Scan Time 030
22 EPAD4 Retrigger Cancel 015
23 EPAD4 Mask Time 016
24 EPAD4 Crosstalk Cancel 06
Table 4-3 Chain setup
If you want to send Data Request to the SPD-20 in this area, set the address and the size as
follows.
Other data requests specifying address or size are ignored.
Moreover, you cannot choose the address to which the data in this section is transmitted,
nor can you choose the address from which it is received.
address = 02 00 00 00
size = 00 00 01 00
Address Map
Address Block Sub block Reference
========== =========== ========== =========
00 00 00 00 +——————-+........+————–+........+——-+
| Patch Param. | | Patch#0 | |4-1 |
+——————-+. +————–+........+——-+
| | . | Patch#1 |
|| .+————–+
| | . | : |
| | . +————–+
| | . | Patch#97 |
| | . +————–+
| | . | Patch#98 |
| | +————–+
01 00 00 00 +——————-+.....................................+——-+
| System setup | | 4-2 |
02 00 00 00 +——————-+.....................................+——-+
| Chain setup | | 4-3 |
+——————-+.....................................+——-+
5.Useful Information
[Decimal and Hexadecimal]
It is common to use 7-bit Hexadecimal numbers in MIDI communication.
The following is a conversion table between decimal numbers and 7-bit Hexadecimal num-
bers.
fig.
* To indicate a decimal number for the MIDI channel and Program number, add 1 to the
Decimal number in the table.
* The resolution of 7-bit Hexadecimal numbers is 128. Use several bytes for values which
require more resolution.
i.e. The number aa bbH in 7-bit Hexadecimal is aa x 128 + bb in Decimal form.
* A signed number is indicated as 00H = -64, 40H = ±0, 7FH = +63.
So the signed number aaH in 7-bit Hexadecimal is aa - 64.
A signed number using two bytes is indicated as 00 00H = -8192, 40 00H = ±0, 7F 7FH =
+8191.
So the signed number aa bbH in 7-bit Hexadecimal is aa bbH - 40 00H = aa x 128 +
bb - 64 x 128
* The data indicated as nibbled is a 4-bit Hexadecimal number.
i.e. 0a 0bH is a x 16 + b.
<EXAMPLE 1> Convert “5AH” in Hexadecimal to a Decimal number.
(By using the table) 5AH = 90
<EXAMPLE 2> Convert “12 34H” in 7-bit Hexadecimal to a Decimal number.
(By using the table) 12H = 18, 34H = 52
So, 18 x 128 + 52 = 2356
<EXAMPLE 3> Convert “0A 03 09 0D” in nibblized form to a Decimal number.
(By using the table) 0AH = 10, 03H = 3, 09H = 9, 0DH = 13
So, {(10 x 16 + 3) x 16 + 9} x 16 + 13 = 41885
[Example of actual MIDI messages]
<EXAMPLE> C9 49
Cn is a status of a Program change message, and n is a MIDI channel number.
The second byte is a Program number. 9H = 9, 49H = 73
So, this is a Program change message of MIDI channel=10, Program number = 74.
[Checksum of Roland System Exclusive
messages]
Roland System Exclusive messages (RQ1 and DT1) have a Checksum at the end of the data
(before EOX) to be able to check for communication errors.
The Checksum results from address and data (or size) included in the message.
How to calculate Checksums (H indicates Hexadecimal.)
The error checking process uses a Checksum and provides a bit pattern where the last sig-
nificant 7 bits are zero when values for an address, data (or size) and the Checksum are
summed.
If the address is aa bb ccH and the data( or the size) is dd ee ffH
aa + bb + cc + dd + ee + ff = sum
sum ÷ 128 = quotientremainder
128 - remainder = checksum
<EXAMPLE 1> Set “FX TYPE” of patch2 to 10
See the Parameter address map
Address: 00 01 00 03H the value of FX TYPE = 10 is 09H
F0 41 09 00 0D 12 00 01 00 03 09 ?? F7
(1) (2) (3) (4) (5) address data checksum (6)
(1) Exclusive Status (4) Model ID (SPD-20)
(2) ID (Roland) (5) Command ID (DT1)
(3) Device ID (09H) (6) End of Exclusive
The Checksum is:
00H + 01H + 00H + 03H + 09H = 0 + 1 + 0 + 3 + 9 = 13 (sum)
13 (sum) ÷ 128 = 0 (quotient)13 (remainder)
checksum = 128 - 13 (remainder) = 115 = 73H
Therefore, the message to send is: F0 41 09 60 12 00 01 00 03 09 73 F7.
<EXAMPLE 2> Request to transfer the “MIDI CH” of Pad1 (BANK A), Patch 3.
See the Parameter address map
Address: 00 02 01 08H
Size: 00 00 00 01H
See the Parameter address map
Address: 00 01 00 03H the value of FX TYPE = 10 is 09H
F0 41 09 00 0D 11 00 02 01 08 00 00 00 01 ?? F7
(1)(2)(3) (4) (5) address data checksum (6)
(1) Exclusive Status (4) Model ID (SPD-20)
(2) ID (Roland) (5) Command ID (RQ1)
(3) Device ID (09H) (6) End of Exclusive
The Checksum is:
00H + 02H + 01H + 08H + 00H + 00H +00H + 01H = 0 + 2 + 1 + 8 + 0 + 0 + 0
+ 1 = 12 (sum)
12 (sum) ÷ 128 = 0 (quotient)12 (remainder)
checksum = 128 - 12 (remainder) = 116 = 74H
Therefore, the message to send is: F0 41 09 60 11 00 02 01 08 00 00 00 01 74 F7.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
Decimal Decimal Decimal Decimal
Hexa-
decimal
Hexa-
decimal
Hexa-
decimal
Hexa-
decimal
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH
101
1
2
3
4
5